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NOTES ON MODULATIONAL INTERACTION OF SECONDARY
STRUCTURES, PART I

LECTURE BY P.H. DIAMOND AND NOTES BY RONGJIE HONG

1. SHORT INTRODUCTION ON DISPARATE SCALE INTERACTION

In this lecture, we will introduce one generic class of nonlinear precesses called
disparate scale interaction. Plasma turbulence itself has several explicit distinct
characteristic length scales. For instance, ion gyroradius p; and electron gyroradius
pe in magnetized plasmas. The Debye length for collective oscillation, and skin
depth for magnetic perturbation.
 One reason for the disparate scales is that m, < m;, thus plasmas have different
fluctuation properties, e.g. plasma waves vs. ion-acoustic waves.

Nonlinear dynamics: unstable modes couple stable modes with common scale
length. For example, drift waves are unstable when k| < kg, then nonlinear inter-
action within like-scale will increase k|, allowing energy transfer to strongly damped
modes.

Disparate scale interaction is in contrast to Kolmogorov cascade in neutral fluids.
In cascade, the kinetic energy is transferred from large scale L to micro-scale I
where the kinetic energy dissipated. And there is no preferred scale between L and

lg.

High w high & fluctuation (small) — low w low k structure (large) by effective ‘

stress, and couple energy to large scale; Low w low k structure (large) — high w
high % fluctuation (small) by refraction or strain field, as shown in Fig. 1.1
'Disparate scale interaction is a typical process for the generation of large scale
structure [Diamond et al. PPCF 2005]. Formation of large scale by turbulence is
similar to ’inverse cascade’ in fluid dynamics. But in disparate scale interaction,
the energy transfer directly to long-wavelength structure from small scales, while

High frequency,
- small scale
Effective Strain or
stress refraction
by 'small’ by 'large’

on 'small'

on 'large' -
Low frequency, )
large scale

FIGURE 1.1. Interaction between small-scale fluctuations and
large-scale ones.
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in ’inverse cascade’ case, the transfer occurs through a sequence of intermediate
scales.

The disparate scale interactions has many examples. The simplest one is the
interaction between Langmuir turbulence (plasma waves or plasmons) and ion-
acoustic waves (phonons). In this case, the plasma waves form ponderomotive
pressure field to ion-acoustic waves, and the density perturbation of ion-acoustic
waves refracts plasma waves, so that the modulation of plasma waves grows.

The second example is the drift wave-zonal flow interaction in toroidal plasmas.
In this case, small scale drift wave turbulence induces transport of momentum
(Reynolds stress or vorticity flux), which amplifies the zonal flow shear. On the
other hand, zonal flow shears stretch and tilt the drift wave packet. The coupling
leads to an energy transfer from drift wave turbulence to zonal flows, which is an
important nonlincar process for confinement of toroidal magnetized plasmas.

In the following contents, we will discuss these two examples.

/\-D 2. WAVE KINETIC THEORY FOR LANGMUIR TURBULENCE

In general situations, plasma waves are excited as Langmuir turbulence, and the
ion-acoustic waves may also be a broad-band spectrum. The evolution of enve-
lope of Langmuir turbulence then may be comparable to the ion-acoustic speed.
The coupling between Langmuir turbulence and ion-acoustic waves is studied using
. quasi-particle approach here.

The Langmuir turbulence field is characterized by action density N(k,x,t), i.e
population density of waves.

o
x|
8m

Ey 0
N2— E’ Ek = %(we)iwk

where Ej, is energy density, E,, is the electric field of plasma wave at wave number
k.
The ion-acoustic waves are described by the density and velocity perturbations
7 and V, both of which vary slowly compared to k and wj, of Langmuir turbulence.
Under the condition of scale separation, the N(k,x,t) is conserved along the
trajectory. The wave kinetics equation for Langmuir turbulence under the influence
of ion-acoustic waves is written as,

dN = 0N i I a0 ~  ON
the trajectories determined by eikonal equations,
dx ; G = ak  © 3
%5 = a7 %

In the presence of long-scale perturbations, wave frequency is modified,
Wk = wko + Wk

wio is given in the absence of acoustic waves, and the unperturbed orbit of quasi-
particles is then,
dX() s awko dk() = awko

o Ox . = =
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2.1. Evolution of the Langmuir wave action density. Set the action density
of plasmons N = (N) + N. We analyze the case that the Langmuir turbulence is
homogeneous in unperturbed state, and the Doppler shift is smaller than effects of
modulation of refraction, then the dispersion relation for plasma waves is

2 2 n
w”=wg(l+ —
pO( 710)
2.1.1. Ewvolution of Langmuir wave energy density. In interacting with acoustic
waves, the action density N is conserved, then the change of energy density of
plasma waves is

d d d
Noting the relations,
d G 8wk dk s Bwk 0 (_A)Loi

Ewk—ﬁ(";ﬁ—vg'(-—g):_"g'é}( 5w
where we use
dk  Owp  wyo ON
@ - % Imgox
then one has,
dEk pr() an

—_— = v

dt 2ng ¢ Ox ‘
Putting N = (N) + N into this relation, and 1st order terms vanishes in long time
average, 2nd order terms survive,

d o Wpo - On
E<Ek> e <N5;) /

This relation indicates that the change of plasma waves energy density, which is
transferred to ion-acoustic waves, is given by the correlation (N 2—2).

2.1.2. Wave kinetic equation of Langmuir action density. Putting N = (N) + N

into equation 2 1, yields the response of (N) and N to ion-acoustic waves,
ON ON Odwiy ON 8 O(N)
22 o TV ax T ax 9k ox ok

O(N) o 00 -
e e e e
ot ok { ox )
Here we neglect the V and k - V, since the Doppler shift by the ion fluid motion is
smaller than the effect of the modulation of refraction wy.

2.2. Linear response of distribution of quasi-particles. Set the fluctuations
to be

n= an,g exp(iq - x — i), N = Z Ny aexp(iq - x — i)
7,2 7,2

q, Q stand for the slow spatiotemporal variation associated with ion-acoustic waves.

Then we can get response from equation 2.2,

o e Wp0E T ‘8<N>
Nag = Q—q-v, 2ng TR

oll-
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When the self-interaction of plasma waves is weaker than the decorrelation due
to the wave dispersion, i.e. Tae < Tir, Te, We can use quasi-linear theory to calculate
the mean evolution of energy density,

d 9(N)

(23) E(Ek) = —DNa—k

2 .

Wpo 2 i O(N)
Dy=(22) 23 n — v, qq-

N (2n0) qQ| ol Q—q-vg+wNVg Mk

i
Q—qiy, +irn

—+m6(Q—q-v,)

which is consistent with previous result.
Relation to wave-wave interaction
From Golden rule we know that
i
Rate ~ §(Wgtq — W — Wq) ¥ ————————
. 3 Wi+q — WE — Wy
In disparate scale interaction, we have q < k, then

1 e ] ]

Whtq —Wk — Wy W +q% —wp—w, QU — Wy
The equation 2.} describe the relation between action density (wave population
density) (N) and the energy transfer from plasma waves to ion-acoustic waves.
Since the group velocity of plasma waves is v, = aa% = yrvik/wr > 0, the
damping of plasma waves should satisfy the condition,
9(N)

d

i.e. the energy transfer from plasma wave quasi-particles to ion-acoustic waves
requires a population inversion, and the ion-acoustic waves grow in time at the
expense of plasma waves.

2.3. Growth of ion-acoustic waves. The influence of Langmuir waves on ion-
acoustic waves is due to electron pressure from fast oscillation by the plasma waves.
But the ion kinetic energy associated with this rapid oscillation is m./m; times
smaller than that of electrons. In slow varying scales, which is relevant to ion-
acoustic waves, the rapid electron oscillation induces an radiation pressure,

) B[
Prad = aw(w6)|wp0 87

where E is the electric field, € is a dielectric function. p,.q is essentially plasma
wave energy density. The gradient of p,q4, i.e. ponderomotive force, induces a slow-

varying ion motion. In addition to thermal pressure p;, = cZfim;, the linearized
ion equation of motion is

m-noa—‘i - —i(pm + Praa)
LGt (6 L i e
plus the continuity equation,
Mo, . AV '

%
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[ Wave kinetics | Envelope
phonon N E envelope
Wave kinetic equation Zakharov equation
phase space real space
adiabatic IV conserved | envelope affected by IAWs
stochastic coherent

TABLE 1. Wave kinetics approach versus envelope formalism for
Langmuir turbulence.

eliminating V', we have dynamics equation for ion-acoustic waves

2 = 2 = 2
(2.4) a_iza_ c§l+_lEl__
Ot2ng Ox2 ng 8mwngm;
write Q‘f—'ﬂi == f dkw, N and use linear response of action density,
Ko 4wpo _ﬁ_f)(N)
Q — qug 2ng Ok

then we have

el BN e R | qupo 7 O(N)
wn—o—w@n—ﬁﬁi/d’“w (‘Q_qvgﬁ ok ))

then the dispersion relation is

2
g _iogw. . gy el 9(N)
e 2m /dk( Q—qu, Ok

(2

2
Wpo : 9(N)

¢t + qzﬁ /dk <z7r5(Q — qvg)ﬁ—

set 2 = qcg + YN, YN <K gcs, then one has,

- 9(N)

PR
Q= qcs +1mq ¥ /dkd(Q = QUQ)W

’LCS
so the ion-acoustic wave is unstable if
9(N)
W Sikat Q) > qUg

We can compare the wave kinetics approach to envelope formalism using table

3. WAVE KINETICS FOR ZONAL FLOW GENERATION

It is worthwhile to note that the zonal flow growth is quite similar to the problem
of Langmuir turbulence. In Langmuir turbulence, low frequency test phonons (i.e.
ion-acoustic waves) grow by attracting energy from ambient plasmons (i.e. plasma
waves). In this case, the zonal flow is the analogue of the ion-acoustic wave, while
the drift waves are the analogue of plasma waves, and the test zonal flow interacts
with a broad spectrum of drift wave fluctuations.

The essence of the theory for zonal flow growth is:

e Get mean field evolution equation of zonal flow, which relates 0;¢zp to
(¢% ), in the presence of wave pressures and stresses.

/2,
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e Then calculate the response of the drift wave spectrum to the test zonal
flow shear.

This procedure is similar to modulational stability calculations. The time scale
separation between low frequency zonal flow and high frequency drift waves enables
the utilize of wave kinetics to calculate the response of the drift wave spectrum to
the test zonal flow shear.

The zonal flow structure is essentially 2-dimensional. Thus in dimensionless
form, the zonal flow potential evolves according to 2D vorticity equation,

0 V202r =~ -5 bow) — 14625

i.e. this equation relates the change of zonal flow vorticity to the drift wave vor-
ticity flux. Zonal flow evolution is then a process driven by vorticity transport, as
temperature and density evolution are driven by heat and particle fluxes.

Rewrite the drift wave vorticity flux (6TV2G~5DW ) = B0, (0,0p) in this equation,
noting v, = —89(1~$DW/B, one have,

0 if ~ |2
(3.1) o V0ar = 52 [ Phbko 6] ~14VE0zr
equation .1 directly relates the evolution of zonal flow potential to the slow-varying
envelope of the drift wave intensity.

The drift wave energy density is
Ep = (1+ K1 0) oxl”
the potential enstrophy is
Zi = (L+ K159 |onl’

the drift wave dispersion relation is

B e T
1+ ki p3
thus the wave action density is
2
N=Zo i
the wye = koVi here is constant, since kg is unchanged by zonal flow shearing, i.e.
%tl = —%(kszp(z)) = (. Thus we can relate wave action density to drift wave
fluctuation intensity, noting VZ¢zr = quZp, the equation .1 becomes
0

: 14 ki-ko - o
(3.2) Vzr = /ko(——O—N_'Yd(quZF)

ot B2 or? 1+ k% p2)2

The modulational response N now can be calculated using linearized WKE for
zonal flow shears,

ON ON g5 el ol BN
% U + %N = 'a_r(kQVZF)'m

then the modulation N induced by Vzp is given by

qkoVzr  O(N)

o
Q — qug + iy Ok,

/0.
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s | Plasma waves and IAWs | DWs and ZFs
High freq fluctuation plasma wave (plasmon) drift wave
Low freq structure ion-acoustic wave (phonon) zonal flow
Drive mechanism ponderomotive pressure Reynolds stress
wave action distribution plasmon number potential enstrophy

N = (1+K202)° |oul’

Modulational instability | population inversion needed | population inversion unnecessary

Regulator ion Landau damping of phonon collisional damping for ZFs

TABLE 2. Langmuir turbulence case versus zonal flow generation case.

so the theory conserves the energy which gives rise to a predator-prey model. Then
drift wave turbulence energy is transferred into the energy of zonal flow via the
modulational instability.

Now we have introduced both plasma wave-sound wave interaction (i.e. plasmon-
phonon) and the drift wave-zonal flow interaction. The comparison is listed in table

4. NONLINEAR SCHRODINGER EQUATION FOR LANGMUIR WAVES

4.1. Influence of jon-acoustic waves on plasma waves. A heuristic description
can be developed by applying the envelope formalism to plasmon-phonon interac-
tion. We can write inhomogeneous plasma waves as

E ~ E(z,t)eqexp(ik - x — iwt)

where the E(xz,t) indicates the slow-varying envelope, the ey denotes the polar-
ization of the wave field, the exp(ik - x — iwt) is the fast oscillating plasma wave
carrier. For plasma waves, the dispersion relation is

gt 252
w” = wy, + ak®vy

Se=
set w = wyg + 1 < wyo), plug it back, then we have >
po + 17 (Y L wpo), plug ; ; P(“'?)Ju‘) 3

: n

wgo + 2iwpey = wf,o + aw? k% + wgon—

0
% ST n
W00 = Gl Wpo =

since v — 9; and k? — —V?, we get

e ) n
(4.1) 22wp0§E = —a’uieVQE + wf,on—o
together with equation 2.1 which we repost here,

2 i 7l |E|?
42 —_— = 2V2 —_— + SRR A S T
4} ot2 ng € (no 8mngm;c?

the set of equations 1.1 and 1.2 is knowns as Zakharov equations. They are coupled
envelope equation. In the absence of nonlinear coupling, i.e. if 7 — 0, Eq. ||
becomes the Schrodinger equation for a free particle, and if |E |2 — 0, Eq. 4.2

reduces to the ion-acoustic wave equation.
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put this back into zonal flow evolution equation, then the modulational instability
eigenfrequency is,
- L [ B R0
BeL Q — qug + iy (1 + k3 p2) Ok,
the imaginary part gives the zonal flow growth rate

2 2

& Py o K2k, O(N)
3.3 I'=—-——=— [ d°k -,
6% =3 @@ P +Z U+ R A7 ok

—¥Yd

The growth of zonal flow requires %% < 0, which is satisfied for any realistic
equilibrium spectrum of drift wave turbulence. In contrast to Langmuir turbulence,
there is no population inversion here for zonal flow growth. This is because for drift
waves are backward wave,

Owk 0 k()V* Qk()kr (%
= — Vs
Y9 Bk, Ok 1+ K22 (Lt K p2)2 v
while the plasma waves are forward wave, i.e. vg/v, > 0.
On the other hand,

d dwk
ST sk
die dt
while
dk, 0
= ——(koV;
g7 ar( oVzr(z))
= —koVzr
Ol )@ e
o = o \VzrF)
d{By) 0 TR
@ty —H = wng <k9VZFN>
gok: - |20(N)
= - d%k ———’V —_
Z/ Ok, Q — qug + 17k ZF\ ok,
g kgl - |2 9(N)
5 = d*k \%
(3.5) BzZ/ —qvg)2+7k (1+kj_ps) ’ ZF‘ ok,
since ?)“’T’“ < 0, growth of zonal flow by depleting energy from drift waves also
rag DN
requires 5= < 0:
From Eq. .2 and 3.3, neglecting collisional damping, we have
d |~ |2 o
alVer| = Xora|Per]
2
ik, O(N)
— V
BQZ/ Q- qvg (1+klps \ ZF‘ Ok,

It is thus apparently that

% (‘VZF{Z’ + (Ek)) =



